Abstract

BackgroundAbnormalities in cortical excitability and plasticity have been considered to underlie the pathophysiology of schizophrenia. Transcranial magnetic stimulation combined with electroencephalography (TMS-EEG) can provide a direct evaluation of cortical responses to TMS. Here, we employed TMS-EEG to investigate cortical responses to orbitofrontal cortex (OFC) stimulation in schizophrenia. MethodsIn total, we recruited 92 drug-naïve patients with first-episode schizophrenia and 51 age- and sex-matched healthy individuals. For each participant, one session of 1-Hz repetitive TMS (rTMS) was delivered to the right OFC, and TMS-EEG data were obtained to explore the change in cortical-evoked activities before and immediately after rTMS during the eyes-closed state. The MATRICS Consensus Cognitive Battery was used to assess neurocognitive performance. ResultsThe cortical responses indexed by global mean field amplitudes (i.e., P30, N45, and P60) were larger in patients with schizophrenia than in healthy control participants at baseline. Furthermore, after one session of 1-Hz rTMS over the right OFC, the N100 amplitude was significantly reduced in the healthy control group but not in the schizophrenia group. In the healthy control participants, there was a significant correlation between modulation of P60 amplitude by rTMS and working memory; however, this correlation was absent in patients with schizophrenia. ConclusionsAberrant global cortical responses following right OFC stimulation were found in patients with drug-naïve first-episode schizophrenia, supporting its significance in the primary pathophysiology of schizophrenia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.