Abstract

Vagal nerve dysfunction has been implicated in the pathogenesis of diabetic gastroparesis, but its role in idiopathic gastroparesis remains uncertain. The increase in pancreatic polypeptide with sham feeding is often used as a measure of vagal integrity. Ghrelin has been suggested to function as an appetite-stimulating hormone from the gut to the brain acting through vagal afferent pathways. Systemic ghrelin also rises in part due to vagal efferent pathways. Alterations in ghrelin and its effects on appetite could play a role in gastroparesis. In this study we aimed [1] to investigate the presence of vagal nerve dysfunction in patients with idiopathic and diabetic gastroparesis and [2] to determine if alterations in ghrelin concentrations occur in gastroparesis. Normal subjects and patients with diabetic, idiopathic, or postsurgical gastroparesis underwent a sham feeding protocol. Serial blood samples were obtained for plasma ghrelin and pancreatic polypeptide. Sham feeding was characterized by an increase in pancreatic polypeptide and ghrelin in normal controls and patients with idiopathic gastroparesis. The changes in pancreatic polypeptide and ghrelin levels in diabetic and postsurgical gastroparesis were significantly less than those in normal subjects. Vagal nerve dysfunction, as evidenced by an impaired pancreatic polypeptide response with sham feeding, is present in diabetic gastroparesis but not idiopathic gastroparesis. Systemic ghrelin concentrations increased with sham feeding in normal subjects and patients with idiopathic gastroparesis but not in diabetic or postsurgical gastroparesis. Vagal function and regulation of ghrelin levels are impaired in diabetic gastroparesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call