Abstract

Renal cell carcinoma (RCC) is a prevalent malignancy within the genitourinary system. At present, patients with high-grade or advanced RCC continue to have a bleak prognosis. Mounting research have emphasized the significant involvement of Forkhead box M1 (FOXM1) in RCC development and progression. Therefore, it is imperative to consolidate the existing evidence regarding the contributions of FOXM1 to RCC tumorigenesis through a comprehensive review. This study elucidated the essential functions of FOXM1 in promoting RCC growth, invasion, and metastasis by regulating cell cycle progression, DNA repair, angiogenesis, and epithelial-mesenchymal transition (EMT). Also, FOXM1 might serve as a novel diagnostic and prognostic biomarker as well as a therapeutic target for RCC. Clinical findings demonstrated that the expression of FOXM1 was markedly upregulated in RCC samples, while a high level of FOXM1 was found to be associated with a poor overall survival rate of RCC. Furthermore, it is worth noting that FOXM1 may have a significant impact on the resistance of renal cell carcinoma (RCC) to radiotherapy. This observation suggests that inhibiting FOXM1 could be a promising strategy to impede the progression of RCC and enhance its sensitivity to radiotherapy. The present review highlighted the pivotal role of FOXM1 in RCC development. FOXM1 has the capacity to emerge as not only a valuable diagnostic and prognostic tool but also a viable therapeutic option for unresectable RCC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.