Abstract
Consider a $C^{1+\epsilon}$ diffeomorphism $f$ having a uniformly hyperbolic compact invariant set $\Omega$, maximal invariant in some small neighbourhood of itself. The asymptotic exponential rate of escape from any small enough neighbourhood of $\Omega$ is given by the topological pressure of $-\log |J^u f|$ on $\Omega$ (Bowen–Ruelle in 1975). It has been conjectured (Eckmann–Ruelle in 1985) that this property, formulated in terms of escape from the support $\Omega$ of a (generalized Sinai–Ruelle–Bowen (SRB)) measure, using its entropy and positive Lyapunov exponents, holds more generally. We present a simple $C^\infty$ two-dimensional counterexample, constructed by a surgery using a Bowen-type hyperbolic saddle attractor as the basic plug.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.