Abstract

Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disease of the motor system due to the selective and progressive degeneration of both upper and lower motor neurons. Disturbances in energy homeostasis were repeatedly associated with the ALS pathogenesis and appear early during the disease process. In this review, we highlight recent work demonstrating the crucial role of energy metabolism in ALS and discuss its potential clinical relevance. The alteration of various metabolic pathways contributes to the heterogeneity of the clinical phenotype of ALS. Recent work showed that different ALS mutations selectively impact these pathways and translate to the disease phenotypes in patients and disease models. Strikingly, a growing number of studies point towards an early, even presymptomatic, contribution of abnormal energy homeostasis to the ALS pathogenesis. Advances in metabolomics generated valuable tools to study altered metabolic pathways, to test their therapeutic potential, and to develop personalized medicine. Importantly, recent preclinical studies and clinical trials demonstrated that targeting energy metabolism is a promising therapeutic approach. Abnormal energy metabolism is a key player in ALS pathogenesis, emerging as a source of potential disease biomarkers and therapeutic targets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call