Abstract

The drone noise mainly comes from its rotating blades, providing plentiful information of the status of the drone. In the production line, the abnormal sound detection system has the advantages of no contact and simple deployment and can help to locate the fault products at relatively low costs. Therefore, this paper develops an abnormal drone noise detection system based on the microphone array and self-supervised learning. The microphone array is a part of the data acquisition module to pick up the drone noise. There are eight microphones in the array, forming four differential microphone pairs. Each of them is pointing to a blade of the drone. A four-channel noise sample is recorded and then analyzed. It is worth noting that drone noise samples are extremely unbalanced, because abnormal samples are difficult to encounter. Hence, a self-supervised learning strategy is adopted by creating auxiliary classification tasks to fine tune representations of the normal drone noise samples. With the consideration of low-complexity, the trained neural network models can be finally deployed even on a Raspberry Pi system with no graphic cards.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.