Abstract

The transcription factor p45 nuclear factor-erythroid-derived 2 (NF-E2) plays major roles in erythroid and megakaryocytic lineages. Here, we investigated the role of p45 NF-E2 in erythroid differentiation in vivo. Absence of p45 NF-E2 in mice leads to a twofold increase in serum erythropoietin levels. In the bone marrow of these animals, we found a different distribution of precursor populations compared to wild-type mice, suggesting abnormal differentiation. Loss of p45 NF-E2 was also associated with an increase in splenic erythropoiesis, as evidenced by an accumulation of early precursors, namely, late basophilic and polychromatic erythroblasts. These observations are consistent with a stress erythropoiesis phenotype and indicate that the spleen is likely compensating for ineffective erythropoiesis in the bone marrow. Analysis of bone marrow samples revealed increased GATA1 levels, as well as an increased proportion of erythroid cells arrested at the G(1) stage of cell cycle in p45 NF-E2-deficient mice. These results suggest that p45 NF-E2 is required for the differentiation of erythroid precursors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.