Abstract

The collagens produced by chick embryo chondrocytes cultured in alginate beads were investigated both biochemically and ultrastructurally. The cartilage phenotype is maintained for at least 14 days, as indicated by the production of the cartilage-specific collagens II, IX, and XI and the absence of collagen I. There were differences in the distributions of collagens among the three different compartments analyzed (cells and their associated matrix, further-removed matrix (released by alginate solubilization), and culture medium), with large amounts of collagen IX (mainly in proteoglycan form) in the culture medium. Inhibition of lysyl oxidase activity by β-aminopropionitrile led to an overall decrease in collagen production. In contrast to the biochemical observations, collagen ultrastructure in the extracellular matrix of alginate cultures was not in the form of the expected 64-nm banded fibrils, but rather in the form of segment-long-spacing-like crystallites. This abnormal structure is likely to be a result of alginate disrupting normal assembly. We conclude that, in this system, the native fibrillar structure of the collagenous matrix is not essential for the maintenance of the differentiated phenotype of chondrocytes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.