Abstract
Increasing evidence suggests that heroin addiction may be related to the dysfunction among the triple brain network (default mode network [DMN], salience network [SN] and executive control network [ECN]). However, the characteristics of glucose metabolism and metabolic connectivity among core regions of the triple brain network remain unknown. Therefore, we hypothesized that individuals with heroin dependence would show abnormal glucose metabolism and accompanied abnormal metabolic connectivity within the triple brain network. Individuals with heroin dependence and healthy controls matched for age and sex underwent integrated positron emission tomography/magnetic resonance imaging (PET/MRI). Differences in glucose metabolism and metabolic connectivity among the DMN, SN and ECN were analyzed based on 18F-fluorodeoxyglucose PET and resting-state fMRI data. We included 36 individuals with heroin dependence and 30 matched healthy controls in our study. The heroin dependence group showed a significant reduction of glucose metabolism in the bilateral anterior insula (AI) and inferior parietal lobule (IPL), and a significantly decreased metabolic connectivity between the right AI and the left dorsolateral prefrontal cortex (DLPFC). The daily dose of methadone was negatively correlated with glucose metabolism of the right AI and right IPL. The results revealed the glucose metabolism alterations and metabolic connectivity only within the triple brain network in individuals with heroin dependence; additional brain networks should be investigated in future studies. Although methadone is an opioid with a similar neurophysiological mechanism as heroin, the specific chronic effects of methadone on cerebral metabolism and metabolic connectivity should also be investigated in future studies. Our findings suggest that long-term opioid use might, to some extent, be associated with reduced synergistic ability between the SN and ECN, which may be associated with the dysfunction of cognitive control. In particular, the right AI, which showed hypometabolism and related reduction in SN-ECN metabolic connectivity, should receive increasing attention in future studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.