Abstract

Vitamin D is a steroid hormone with several important functions in the nervous system. Numerous human and animal data link alterations in the vitamin D system to various behavioral disorders. Grooming is an important element of rodent behavior with a general pattern of cephalocaudal progression (paw licking – nose/face wash – body wash – tail/genitals wash). Here we studied whether genetic ablation of vitamin D nuclear receptors (VDR) in mice may be associated with altered behavioral sequencing of grooming. Overall, VDR null mutant mice showed abnormal grooming, including a higher percentage of “incorrect” transitions and longer duration of “incorrect” grooming (contrary to the cephalocaudal progression); a higher percentage of interrupted grooming bouts; and the atypical regional distribution of grooming (more leg grooming, less body and tail/genitals grooming), compared to their wild-type controls. Grooming of heterozygous mice was similar to the wild-type group, indicating that abnormal grooming patterning is inherited as a recessive. In contrast, behavioral sequencing of another complex behavior (mating with a female) was unaltered in all three genotypes, suggesting grooming-specific abnormal sequencing in these mutant mice. Our results suggest that a neurosteroid vitamin D and VDR may play an important role in controlling sequencing of grooming in mice, and further confirm the important role of the vitamin D system and VDR in the regulation of behavior.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.