Abstract

Uranyl ions sorption by intergel system consisting of polymethacrylic acid hydrogel (hPMAA) and poly-4-vinylpyridine hydrogel (hP4VP) has been studied. First, reciprocal activation of PMAA and P4VP polymeric hydrogels in water environment was examined in order to predict intergel system sorption activity. Based on the obtained results, it was found that area of maximum hydrogel activation was within the ratios of 100 % hPMAA and 67 % hPMAA:33 % hP4VP. The maximum rate of uranyl ions extraction was also observed within these ratios. The highest uranyl ions sorption by intergel system occurred at 83 %hPMAA:17 % hP4VP ratio. Maximum uranyl ions extraction rate after 56 hours of hydrogels remote interaction was 82.5 %, when polymeric chain binding rate was 9.94 % and effective dynamic exchange capacity was 1.12 mmol/g. Significant increase of intergel system sorption activity within the ratios of 100 % hPMAA and 67 % hPMAA:33 % hP4VP in comparison with initial inactivated hydrogels 100 % hPMAA and 100 % hP4VP was confirmed by combined calculation data of extraction rates of inactivated PMAA and P4VP polymeric hydrogels. The obtained results illustrated changes of initial polymeric hydrogels’ electrochemical sorption properties in intergel system leading to functional groups obtaining higher reactive ability, which made it possible to use them for further development of highly efficient uranyl ions extraction sorption technology

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call