Abstract
Automated detection of abnormal activity assumes a significant task in surveillance applications. This paper presents an intelligent framework video surveillance to detect abnormal human activity in an academic environment that takes into account the security and emergency aspects by focusing on three abnormal activities (falling, boxing and waving). This framework designed to consist of the two essential processes: the first one is a tracking system that can follow targets with identify sets of features to understand human activity and measure descriptive information of each target. The second one is a decision system that can realize if the activity of the target track is normal or abnormal” then energizing alarm when recognized abnormal activities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: TELKOMNIKA (Telecommunication Computing Electronics and Control)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.