Abstract
Gastric cancer (GC) is a malignant tumor with a high mortality rate, and thus, it is necessary to explore molecular mechanisms underlying its progression. While replication factor C subunit 3 (RFC3) has been demonstrated to function as an oncogene in many cancers, its role in GC remains unclear. Tumor tissues were collected from clinical GC patients, and the expression of RFC3 was analyzed. NCI-N87 and HGC-27 cells were infected with lentivirus sh-RFC3 to knock down RFC3 expression. RFC3 expression levels were determined, in addition to cell biological behaviors both in vitro and in vivo. The relationship between RFC3 and the YAP1/TEAD signaling pathway was detected by dual luciferase reporter assay. RFC3 was upregulated in GC tumor tissues. RFC3 knockdown inhibited cell proliferation, promoted cell apoptosis of GC cells, and suppressed cell migration and invasion. Moreover, depleted RFC3 suppressed tumor growth and metastasis in vivo. Mechanistically, the YAP1/TEAD axis activated RFC3 expression transcriptionally by binding to the RFC3 promoter. RFC3 was transcriptional activated by the YAP1/TEAD signaling pathway, thus promoting GC progression. RFC3 may be a promising therapeutic target for GC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.