Abstract

During human and porcine malignant hyperthermia (MH), cardiac dysrhythmias and altered myocardial function can be observed. It is unknown whether a primary abnormality in cardiac muscle contributes to the cardiac symptoms during MH. An abnormal response to halothane has recently been demonstrated in action potentials (APs) from MH-susceptible (MHS) human skeletal muscles. We investigated the electrophysiologic properties in trabeculae isolated from the right ventricles of normal (MHN) and MHS pigs. The experiments were performed on electrically stimulated (1 Hz) trabeculae isolated from the right ventricles of MHS and MHN pigs. Resting membrane potentials, APs, and tension were measured with and without the presence of 1% halothane. In addition, the halothane-equilibrated muscles were exposed to caffeine in increasing doses (1, 2, and 4 mM). In the absence of halothane, resting potential and AP characteristics in MHS and MHN muscles did not differ significantly. Halothane did not alter resting potentials but produced different alterations in the APs in MHS and MHN muscles, whereas the decrease in twitch tension was identical. In contrast to reductions in the AP amplitude and duration in MHN muscle, halothane produced an enlargement of the APs in MHS muscle. The addition of caffeine caused nearly identical prolongations of AP duration in MHS and MHN muscles. This in vitro study demonstrates that halothane produces abnormal alterations in the dynamic electric properties of the ventricular excitable membrane from MHS pigs. These results suggest a latent defect in the myocardium of MHS pigs that becomes apparent in the presence of MH-triggering agents.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call