Abstract

Recent reports indicate that some soluble electron-shuttling compounds (or organic mediators) can accelerate reactions between permanganate (Mn(VII)) and contaminants of emerging concern. However, practical application is limited to homogeneous electron-shuttling compounds. This study reports on the development and application of a heterogeneous electron-shuttling catalyst for Mn(VII) reactions with bisphenol A (BPA). First, we screened a series of poly/monocyclic nitroxides, finding that 9-azabicyclo[3.3.1]nonane N-oxyl (ABNO) provides the most significant enhancement of Mn(VII)/BPA reaction kinetics, where Mn(VII) oxidizes ABNO to BPA-reactive ABNO+. Next, we immobilized ABNO onto silica (SiO2) by covalent bonding of 9-azabicyclo[3,3,1]nonan-3-one-9-oxyl (keto-ABNO) via a 3-aminopropyltriethoxysilane bridge to yield an ABNO@SiO2 heterogeneous catalyst. The performance of ABNO@SiO2 in catalyzing Mn(VII)/BPA reactions is demonstrated, with BPA reaction kinetics being highly dependent on catalyst dosage and pH conditions. The stability of ABNO@SiO2 was retained at pH 5.0 and decreased slightly at pH 7.0 over five successive Mn(VII)/BPA reaction cycles. Kinetics modeling shows that BPA reacts with immobilized ABNO+, Mn(VII), and in situ formed MnO2. Moreover, ABNO+ can form via ABNO reactions with both Mn(VII) and the in situ formed MnO2. These results indicate a promising strategy for developing practical heterogeneous catalysts for enhancing Mn(VII) reactivity and treatment applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call