Abstract

Ongoing advancements in the design and fabrication of soft robots are creating new challenges in modeling and control. This paper presents a dynamic Cosserat rod model for a single-section 3D-printed pneumatic soft robotic arm capable of combined stretching and bending. The model captures the manufacturing variability of the actuators by tuning the pressure-strain relation for each actuator. Moreover, it includes a simple model of the pneumatic actuation system that incorporates the transient response of proportional pressure-controlled electronic valves. The model was validated experimentally for several quasi-static and dynamic motion patterns with actuation frequencies ranging from 0.2 Hz to 20 Hz. The model reproduced the quasi-static experiments with an average tip error of 4.83% of the arm length. In dynamic conditions, the average tip error was 4.33% for stretching and bending motions, 5.64% for five motor babbling experiments, and 22.53% for three challenging sinusoidal patterns. An ablation study of the model components found that the most influential factors for the average accuracy were gravity and strain gains, followed by damping and pressure transient. This work could assist researchers in focusing on the most significant aspects for closing the real-to-sim gap when modeling pneumatic soft robotic arms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.