Abstract

Ultra-high temperature ceramic-modified C/C composites (C/C-UHTCs) were prepared by the reactive infiltration of K2MeF6 (Me = Zr, Ti) mixed with Si and Zr-Si powders. Molten salt infiltration can be divided into two stages: salt ion melt and Me-Si alloy melt. In the temperature range below 1400 °C, Zr and Si dissolve in the molten salt, are carried by the ion melt, and precipitate at the PyC interface to form carbides. Above 1400 °C, a large amount of molten salt volatilises and thermally decomposes. The Me-Si alloy forms a melt and infiltrates the C/C matrix, and finally forms C/C-ZrC-SiC, C/C-Ti3SiC2-SiC, and C/C-ZrC-TiC-SiC composites. The C/C-ZrC-SiC composite with the highest ZrC content exhibited the lowest mass rate (2.6 ± 0.02 mg/s) and linear ablation rate (0.82 ± 0.04 μm/s), which were reduced by 43.5 and 50.8 %, respectively, compared to the unmodified C/C-ZrC-SiC composite.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call