Abstract

A technique is described whereby it is possible to surgically ablate the lumbosacral spinal cord of a developing mouse fetus without interfering with fetal viability. The lumbosacral spinal cords of 14-day in utero, 129ReJ mice were ablated with a Cooper Nd-YAG laser, and the fetuses, enclosed in their membranes and attached to the uterus by their placentae, were allowed to develop in the abdominal cavity of the dam. The cytoarchitecture and the temporal pattern of organogenesis of aneural soleus muscles were studied in spaced, serial, transverse, ultrathin sections of muscles of 16- and 18-day gestation and newborn (20-day gestation) mice. At the time of surgery, the soleus muscle was a discrete mass consisting of primary myotubes and a pleomorphic population of mononucleated cells. Axon bundles and blood vessels were found at the muscle's periphery, but had not penetrated throughout the muscle mass. The organogenesis of the aneural muscle was remarkably similar to that of the innervated soleus muscle (Ontell et al., Am J Anat 181:267-278, 1988). In the aneural muscle, as in the innervated muscle, significant numbers of secondary myotubes formed all along the lengths of primary myotubes. Moreover, the time course of myotube formation, the dynamics of cluster formation and cluster dispersal, and the ultrastructural appearance of the myotubes mimicked that observed in innervated muscle. The frequency of necrotic myotubes was no greater in the aneural muscle than in the innervated soleus muscle. Myotube maturation was similar in aneural and innervated soleus muscles until 18 days gestation. However, at birth, aneural myotubes appeared to be slightly less mature than innervated myotubes. Thus, the major morphogenic phenomena that characterize the development of the soleus muscle appear to be independent of innervation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call