Abstract
Abstract Extreme ultraviolet (XUV) capillary-discharge lasers (CDLs) are a suitable source for the efficient, clean ablation of ionic crystals, which are obviously difficult to ablate with conventional, long-wavelength lasers. In the present study, a single crystal of cesium iodide (CsI) was irradiated by multiple, focused 1.5-ns pulses of 46.9-nm radiation delivered from a compact XUV-CDL device operated at either 2-Hz or 3-Hz repetition rates. The ablation rates were determined from the depth of the craters produced by the accumulation of laser pulses. Langmuir probes were used to diagnose the plasma plume produced by the focused XUV-CDL beam. Both the electron density and electron temperature were sufficiently high to confirm that ablation was the key process in the observed CsI removal. Moreover, a CsI thin film on MgO substrate was prepared by XUV pulsed laser deposition; a fraction of the film was detected by X-ray photoelectron spectroscopy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.