Abstract

Recently, graphene is gaining increasing popularity as one of the most functional materials for advanced electronic and optical devices owing to its high carrier mobility and optical transparency. Patterning the graphene calls for particular cares in line definition without carbon (C)-based residues that might be working as a leakage path. Thus, realization and processing of the graphene monolayer are very complicated and need to be stringently controlled. For this reason, in accordance, processing technology should be evolved with higher reliability and accuracy, and compatibility with the conventional unit processes including electron beam (e-beam) lithography, plasma etching, and nano-dimensional optical lithography. In this work, a reliable, simple, and cost-effective technique for patterning the graphene is proposed. Graphene film transferred on glass substrate is directly patterned by a quality factor (Q)-switched neodymium-doped yttrium vanadate (Nd:YVO4, λ = 1064 nm) pumped laser diode (LD). In order to optimize the process condition, various beaming conditions of repetition rate and scanning speed are experimented. From the optical microscope images, it has been shown that graphene film was more easily etched by direct laser patterning technique at higher repetition and faster scanning speed. It was confirmed by Raman spectrum where 2-dimensional (2-D) and graphite (G) peaks were closely investigated that graphene residue was also completely removed after the proposed processing technique.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call