Abstract

Organic cation transporter (OCT)1 and OCT2 mediate hepatic uptake and secretory renal clearance of metformin, respectively. Pharmacokinetic/pharmacodynamic (PK/PD) implications of simultaneous impairment of both transporters, such as by systemic pan-OCT inhibition, have not been studied directly. At present metformin PK/PD, distribution, and excretion were studied in Oct1/Oct2-knockout mice. Metformin clearance was reduced 4.5-fold from renal blood flow to unbound glomerular filtration rate, and volume of distribution was reduced 3.5-fold in Oct1/Oct2-knockout mice. Oral bioavailability was not affected (F = 64 ± 4 versus 59 ± 11; knockout versus wild type). Liver- and kidney-to-plasma concentration ratios were decreased in Oct1/Oct2-knockout mice 4.2- and 2.5-fold, respectively. The 2.9-fold increase in oral metformin exposure and reduced tissue partitioning yielded little to no net change in tissue drug concentrations. Absolute kidney exposure was unchanged (knockout/wild type = 1.1 ± 0.2), and liver exposure was only modestly decreased (knockout/wild type = 0.6 ± 0.1). Oral glucose area under the curve (AUC) lowering by metformin was not impaired in Oct1/Oct2-knockout mice at the five dose levels tested (ED50 = 151 versus 110 mg/kg; glucose lowering at highest dose = 42 ± 1 versus 39 ± 4%; knockout versus wild type); however, higher systemic metformin exposures were necessary in knockout mice to elicit the same effect (half-maximal efficacious AUC = 70 versus 26 μg x h/ml). Despite major changes in metformin clearance and volume of distribution in Oct1/Oct2-knockout mice, tissue drug exposure and PD were not affected. These findings challenge the presumption that systemic OCT inhibition will affect metformin pharmacology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.