Abstract

Previous studies have validated the use of impedance fall as a measure of the effects of ablation. We investigated whether catheter-to-tissue contact force correlated with impedance fall during atrial fibrillation ablation. A total of 394 ablation points from 35 patients who underwent atrial fibrillation ablation were selected and analyzed in terms of the presence of stable catheter contact in non-ablated areas in the left atrium. A fixed power output (30 W) was applied for 60 seconds. Contact force, impedance fall, and force-direction angle were retrieved and exported for off-line analysis. Qualified points were divided into 5 groups according to the level of contact force (1-5 g, 6-10 g, 11-15 g, 16-20 g, and >20 g). An acute impedance fall was observed in the first 10 seconds followed by a plateau in group I and by a further fall in the other groups. Group V showed a rise in impedance during the last 20 seconds of ablation. Levels of impedance fall at each time point were significantly different among all the groups (P<0.001) except between groups III and IV. There was a significant correlation between contact force and maximum impedance fall (rho = 0.54, P<0.01). Lesions with a force-direction angle of 0-30° had significantly lower contact force and maximum impedance fall than those with angles of 30-60° and 60-135° (P<0.01). Under stable catheter conditions, contact force correlates with impedance fall during 60 seconds of ablation. Contact force exceeding 5 g produces greater impedance fall, which probably indicates adequate lesion formation. A contact force greater than 20 g may lead to late tissue overheating.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.