Abstract
Femtosecond laser ablation of metallic bulk crystals of Au, Ag and Cu was experimentally studied with laser pulse widths ranging from 120 fs through 800 fs at a center wavelength of 780 nm for micro-machining applications. Two different ablation regimes were found in terms of the laser fluence. The characteristic length of different ablation regimes was explained in terms of the optical skin depth and thermal diffusion length; it was determined by the peak electron temperature in the two-temperature model. The lateral feature of the two ablation regimes is discriminated by the amount of particles accumulated by the evaporation process. Ablated particle was observed less in the lower fluence regime than in the higher fluence regime, but there was no significant difference on the ablated surface. The parameters used in the two-temperature model, are discussed in order to model the ultrashort pulsed laser ablation process theoretically. It is shown that the obtainable range of the lower fluence regime is enhanced with the shorter pulse lasers, because the ablation etch rate is decreased with longer pulse width.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Applied Physics A: Materials Science & Processing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.