Abstract

Pitch-based short carbon fibres reinforced Csf/ZrB2-SiC composites were fabricated by direct ink writing of short carbon fibres, followed by slurry impregnation and reactive melt infiltration. Ablation behaviour of the Csf/ZrB2-SiC composite was studied by air plasma test. It is indicated that the skeleton of the oriented short carbon fibres provides heat diffusion channels. Consequently, temperatures at the ablation surface are as low as ∼1730 oC and ∼2000 oC respectively at 4 MW/m2 and 5 MW/m2. The composite presents outstanding ablation-resistant performance with a linear recession rate of ∼ − 0.04 µm/s and mass recession rate of ∼ − 3.40 mg/s at 4 MW/m2, ∼ − 0.17 µm/s and ∼ 3.58 mg/s at 5 MW/m2. It is revealed that the fibres area and matrix area of the composite present different ablation mechanisms. The fibres area is ablated severely, while the matrix area presents excellent ablation-resistance with continuous ZrO2-SiO2 protective layer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.