Abstract

The ablation behavior is crucial to the application of carbon fiber reinforced silicon carbide (C/SiC) composites in thermal protection systems of spacecraft to enter the atmosphere or to cruise hypersonically in near space. Plasma wind tunnel is a suitable tool to simulate the service conditions of space vehicles. In this study, we systematically studied the ablation behaviors of C/SiC composites in plasma wind tunnel. The oxidation behavior of C/SiC composites in plasma is discussed. The results indicated that the oxidation under atomic oxygen condition dominated at low heat flux and stagnation pressure; however, rapid recession mechanism by sublimation and decomposition of SiC was observed at high heat flux and stagnation pressure. The temperature jump phenomenon during the ablation performed under high heat flux and stagnation pressure was attributed to the exposure of the carbon fibers to the plasma flow after consumption of the SiC coatings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.