Abstract
The 2.5 dimensional silica fiber reinforced nitride matrix composites (2.5D SiO2f/Si3N4-BN) were prepared through the preceramic polymer impregnation pyrolysis (PIP) method. The ablation and radar-wave transparent performances of the composite at high temperature were evaluated under arc jet. The composition and ablation surface microstructures were studied by X-ray diffraction (XRD) and scanning electron microscope (SEM). The results show that the 2.5D SiO2f/Si3N4-BN composites have a linear ablation rate of 0.33 mm/s and high radar-wave transparent ratio of 98.6%. The fused layer and the matrix are protected by each other, and no fused layer accumulates on the ablation surface. The nitride composite is a high-temperature ablation resistivity and microwave transparent material.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.