Abstract

IntroductionThe present study was designed to determine the possibility of acetylbritannilactone (ABL) derivative 5-(5-(ethylperoxy)pentan-2-yl)-6-methyl-3-methylene-2-oxo-2,3,3a,4,7,7a-hexahydrobenzofuran-4-yl 2-(6-methoxynaphthalen-2-yl)propanoate (ABL-N) as a novel therapeutic agent in human breast cancers.MethodsWe investigated the effects of ABL-N on the induction of apoptosis in human breast cancer cells and further examined the underlying mechanisms. Moreover, tumor growth inhibition of ABL-N was done in xenograft models.ResultsABL-N induced the activation of caspase-3 in estrogen receptor (ER)-negative cell lines MDA-MB-231 and MDA-MB-468, as evidenced by the cleavage of endogenous substrate Poly (ADP-ribose) polymerase (PARP). Pretreatment of cells with pan-caspase inhibitor z-VAD-fmk or caspase-3-specific inhibitor z-DEVD-fmk inhibited ABL-N-induced apoptosis. ABL-N treatment also resulted in an increase in the expression of pro-apoptotic members (Bax and Bad) with a concomitant decrease in Bcl-2. Furthermore, c-Jun-NH2-terminal kinase (JNK) and p38 mitogen-activated protein (MAP) kinase (p38) were activated in the apoptosis induced by ABL-N and JNK-specific inhibitor SP600125 and JNK small interfering RNA (siRNA) antagonized ABL-N-mediated apoptosis. However, the p38-specific inhibitor SB203580 had no effect upon these processes. Moreover, neither of the caspase inhibitors prevented ABL-N-induced JNK activation, indicating that JNK is upstream of caspases in ABL-N-initiated apoptosis. Additionally, in a nude mice xenograft experiment, ABL-N significantly inhibited the tumor growth of MDA-MB-231 cells.ConclusionsABL-N induces apoptosis in breast cancer cells through the activation of caspases and JNK signaling pathways. Moreover, ABL-N treatment causes a significant inhibition of tumor growth in vivo. Therefore, it is thought that ABL-N might be a potential drug for use in breast cancer prevention and intervention.

Highlights

  • The present study was designed to determine the possibility of acetylbritannilactone (ABL) derivative 5-(5-(ethylperoxy)pentan-2-yl)-6-methyl-3-methylene-2-oxo-2,3,3a,4,7,7a-hexahydrobenzofuran-4-yl 2-(6methoxynaphthalen-2-yl)propanoate (ABL-N) as a novel therapeutic agent in human breast cancers

  • ABL-N treatment causes a significant inhibition of tumor growth in vivo

  • It is thought that ABL-N might be a potential drug for use in breast cancer prevention and intervention

Read more

Summary

Introduction

The present study was designed to determine the possibility of acetylbritannilactone (ABL) derivative 5-(5-(ethylperoxy)pentan-2-yl)-6-methyl-3-methylene-2-oxo-2,3,3a,4,7,7a-hexahydrobenzofuran-4-yl 2-(6methoxynaphthalen-2-yl)propanoate (ABL-N) as a novel therapeutic agent in human breast cancers. Breast cancer is one of the most common cancers among women in both developed and underdeveloped countries. It is the malignancy with the highest incidence and death rate for women [1,2]. In the course of our continuing search for cytotoxic ABL analogues, we synthesized the compound 5-(5-(ethylperoxy)pentan-2-yl)-6-methyl-3methylene-2-oxo-2,3,3a,4,7,7a-hexahydrobenzofuran-4-yl 2-(6-methoxynaphthalen-2-yl)propanoate (ABL-N), which in preliminary studies showed exceptional antiproliferative activity against several human cancer cell types. We showed that ABL-N was more potent than ABL in the ability to induce apoptosis, at a low concentration, of human breast cancer cells and investigated the therapeutic potential of the ABL-N and its underlying mechanism of action

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call