Abstract

Zero valent iron (ZVI) applications to remediation of shallow groundwaters can be affected by dissolved oxygen (DO) and organic ligands. To explore the intersection between these complicating factors, this study thoroughly characterized the reactions of nitrobenzene (NB) with ZVI in the presence DO and the model ligand ethylene diamine tetraacetic acid (EDTA). The results showed that NB is degraded by both ZVI reduction and ZVI-induced advanced oxidation under oxygen-limited conditions. The contribution of ·OH to the degradation of NB increased with time so that nearly 39% of NB was oxidized by ·OH at 15 min (pH = 3), but reduction was still the main pathway of NB transformation throughout. NB reduction products, such as aniline (AN), were also oxidized by ·OH. The lower the pH, the greater the contribution of advanced oxidation, but DO was the limiting factor for ·OH generation. Only 4.7% NB was fully degraded by ring opening and/or mineralization because the production of •OH was limited by low DO. After the transformation of NB and AN, other benzene ring and nitrogen-containing intermediates were identified (e.g., p-nitrophenol, p-aminophenol, hydroquinone, and p-benzoquinone). The removal of total organic carbon and total organic nitrogen was minimal. The results suggested that the relative doses of ZVI, DO, and iron-complexing ligands can be balanced for the optimal (rapid and deep) removal of organic contaminants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call