Abstract

Aqueous microdroplets (<1.3 µm in diameter on average) containing 15 mM d-ribose, 15 mM phosphoric acid, and 5 mM of a nucleobase (uracil, adenine, cytosine, or hypoxanthine) are electrosprayed from a capillary at +5 kV into a mass spectrometer at room temperature and 1 atm pressure with 3 mM divalent magnesium ion (Mg2+) as a catalyst. Mass spectra show the formation of ribonucleosides that comprise a four-letter alphabet of RNA with a yield of 2.5% of uridine (U), 2.5% of adenosine (A), 0.7% of cytidine (C), and 1.7% of inosine (I) during the flight time of ∼50 µs. In the case of uridine, no catalyst is required. An aqueous solution containing guanine cannot be generated under the same conditions given the extreme insolubility of guanine in water. However, inosine can base pair with cytidine and thus substitute for guanosine. Thus, a full set of ribonucleosides to generate the purine-pyrimidine base pairs A-U and I-C are spontaneously generated in aqueous microdroplets under similar mild conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.