Abstract

Clonal kelp taxa may reproduce both sexually and vegetatively resulting in a potential trade-off in the allocation of acquired carbon and nitrogen resources. Such trade-offs may dictate a different response of clonal kelps to varying environmental conditions relative to aclonal kelp taxa. Laboratory temperature and nutrient manipulation experiments demonstrated that investment in sexual and vegetative reproduction in Laminaria sinclairii (Harv. ex Hook. f. et Harv.) Farl., C. L. Anderson et D. C. Eaton was regulated by different abiotic factors. Sorus production (investment in sexual reproduction) and blade growth were significantly higher at 12°C compared to 17°C, regardless of nutrient concentration. Net carbon storage and depletion in rhizomes were observed in the low- and high-temperature treatments, respectively, suggesting that carbon stores were not responsible for increased growth. Rhizome elongation (investment in vegetative reproduction), on the other hand, was significantly higher in 12 μM NO3- than in 2 μM NO3- , irrespective of temperature. This increase in rhizome growth was concurrent with elevated rhizome percent tissue nitrogen levels also observed in treatments with higher nutrients, again indicating a growth response to treatment independent of previous nutrient stores. These results suggest that regulation of growth and investment in sexual reproduction in L. sinclairii is similar to that in aclonal kelps (i.e., warmer temperatures result in decreased reproductive output). Additionally, depletion of carbon and nitrogen from rhizomes in suboptimal conditions confirms the role of clonal kelp rhizomes in carbon and nutrient storage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call