Abstract

AbstractThe oasis effect refers to the impact of advected energy on the surface energy balance leading to enhanced evapotranspiration. In this study, we utilize a 1‐yr record of water, energy, and carbon dioxide (CO2) fluxes to study the occurrence and signature of the oasis effect in an irrigated turf grass of an arid urban region. Days with the oasis effect are selected using readily available air temperature and relative humidity and include excessive heat warnings. During oasis days, higher evaporative cooling is demonstrated throughout the day, especially for late afternoons when it can exceed net radiation. Evaporative enhancements are linked to abiotic mechanisms, such as soil and irrigation water evaporation, since plant productivity is unaltered. Nighttime evaporative losses and CO2 releases are also enhanced during oasis days. Our findings show how the oasis effect impacts the water, carbon, and thermal conditions of urban parks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.