Abstract

A previously unknown abiotic humification pathway which is highly accelerated in frozen solution containing phenolic compounds and nitrite was investigated and proposed. The production of humic-like acids (HLA) and fulvic-like acids (FLA) was observed in the frozen solution (-20 °C) whereas it was negligible in aqueous solution (20 °C). Inorganic nitrogen was transformed into organic nitrogen during the humification process. Mass spectrometry (MS) and elemental analyses, including pyrolysis-GC/MS and FT-ion cyclotron resonance/MS, showed that humification products (HLA and FLA) have chemical structures and compositions similar to nature humic substances. The enhanced humification reaction could be attributed to the freeze-concentration effect, whereby nitrite ions in the unfrozen grain boundary region are transformed into nitrosonium ions which oxidize phenols to phenolic radicals. Confocal Raman microscopy confirmed that catechol and nitrite ions are preferentially concentrated at the ice grain boundary and electron paramagnetic resonance spectroscopic analysis of catechol/nitrite solution detected the phenolic radicals only in frozen solution, not in aqueous solution. The freezing-induced generation of phenolic radicals should lead to the formation of humic-like substances through polymerization. This study identifies and proposes a new humic formation pathway that might work as a model abiotic "bottom-up" mechanism in frozen environmental conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.