Abstract
Microplastics (MPs) are considered one of the most widespread pollutants in all ecosystems worldwide. In the environment, MPs can undergo hydrolysis and/or oxidation, resulting in the release of low-molecular weight degradation products, along with additives, and adsorbed organic pollutants. In this study, the morphological, chemical, and thermal changes of microplastics obtained from two biodegradable plastics, polylactic acid and Mater-Bi®, and a recycled plastic, recycled-polyethylene terephthalate, were examined after accelerated ageing under photo-oxidative conditions in synthetic seawater in a Solarbox system, and after thermal treatment in the dark. Thermal properties were studied by thermogravimetric analysis, differential scanning calorimetry, and evolved gas analysis-mass spectrometry. Compositions and changes of chemical components of the polymers were evaluated by attenuated total reflection-Fourier transform infrared spectroscopy and pyrolysis-gas chromatography–mass spectrometry. The leachable fractions and degradation products released in synthetic seawater by degraded MPs were characterized by gas chromatography–mass spectrometry. This study allowed us to identify hydrolysis as the main degradation pathway of the polymers under analysis, and to characterize not only the oligomers and degradation products released in the water as a consequence of degradation, but also additives used in plastic item formulations. This study improves our understanding of these polymers' behavior under accelerated ageing conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.