Abstract

An ab initio study has been performed for the stability, structural and electronic properties of forty-four ZnxTey (x + y = p = 2 to 5) nanoclusters by employing B3LYP-DFT/LANL2DZ method. The zero-point energy correction is also considered in this study. For a particular configuration, the nanoclusters containing a large number of Te atoms are found the most stable structure in comparison with the other nanoclusters. The most stable nanoclusters have either linear or planer structures and, only Zn4Te configuration has no stable structure as the structures of this configuration have at least one imaginary vibrational frequency. The HOMO–LUMO gap of the most stable structure shows a zigzag variation with the increase in the number of atoms in the nanocluster. The observed enhancement trend of the HOMO–LUMO gap with a decrease in the size of the nanocluster confirms to the quantum-confinement effect. The ionization potential (IP) shows decreasing behavior with an increase in the number of atoms in nanoclusters and the variation of electron affinity (EA) with nanocluster size shows zig-zag behavior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.