Abstract

Starting from chiral nuclear interactions, we evaluate the contribution of the leading-order contact transition operator to the nuclear matrix element (NME) of neutrinoless double-beta decay, assuming a light Majorana neutrino-exchange mechanism. The corresponding low-energy constant (LEC) is determined by fitting the transition amplitude of the nn→ppe^{-}e^{-} process to a recently proposed synthetic datum. We examine the dependence of the amplitude on similarity renormalization group scale and chiral expansion order of the nuclear interaction, finding that both dependences can be compensated to a large extent by readjusting the LEC. We evaluate the contribution of both the leading-order contact operator and standard long-range operator to the neutrinoless double-beta decays in the light nuclei ^{6,8}He and the candidate nucleus ^{48}Ca. Our results provide the first clear demonstration that the contact term enhances the NME in calculations with commonly used chiral two- plus three-nucleon interactions. In the case of ^{48}Ca, for example, the NME obtained with the EM(1.8/2.0) interaction is enhanced from 0.61 to 0.87(4), where the uncertainty is propagated from the synthetic datum.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.