Abstract

Microarray expression profiling provides a comprehensive portrait of the transcriptional world enabling us to view the organism as a ‘system’ that is more than the sum of its parts. The vigilance of cells to environmental change, the alacrity of the transcriptional response, the short half-life of cellular mRNA and the genome-scale nature of the investigation collectively explain the power of this method. These same features pose the most significant experimental design and execution issues which, unless surmounted, predictably generate a distorted image of the transcriptome. Conversely, the expression profile of a properly conceived and conducted microarray experiment can be used for hypothesis testing: disclosure of the metabolic and biosynthetic pathways that underlie adaptation of the organism to infectious processes; the identification of co-ordinately regulated genes; the regulatory circuits and signal transduction systems that mediate the adaptive response; and temporal features of developmental programmes. The study of viral pathogenesis by microarray expression profiling poses special challenges and opportunities. Although the technical hurdles are many, obtaining expression profiles of an organism growing in tissue will probably reveal strategies for growth and survival of the virus in the host's cells. Here, we show data obtained using a tailored microarray system based on synthetic polynucleotides derived from human sequences (SIRS-Lab GmbH, Jena, Germany) to study the effect of cytopathogenic (cpe) and non-cytopathogenic (ncp) bovine viral diarrhoea virus (BVDV) infection of bovine macrophages, focusing on intracellular signalling molecules. Of the 575 genes present on the array, more than 70% showed a reaction with the oligonuleotides spotted on the array, and 26 genes were differentially expressed comparing cDNA derived from cpe and ncp infected cells. These data will help to further understand our knowledge regarding BVDV infection, and will especially help to understand differences in cellular responses to cpe and ncp biotypes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call