Abstract

Gradient-recalled echo (GRE) sequence is time-consuming and not routinely performed. Herein, we aimed to investigate the ability of weakly supervised learning to identify acute ischemic stroke (AIS) and concurrent hemorrhagic infarction based on diffusion-weighted imaging (DWI). First, we proposed spatially locating small stroke lesions in different positions and hemorrhagic infarction lesions by residual neural and visual geometry group networks using weakly supervised learning. Next, we compared the sensitivity and specificity for identifying automatically concurrent hemorrhagic infarction in stroke patients with the sensitivity and specificity of human readings of diffusion and b0 images to evaluate the performance of the weakly supervised methods. Also, the labeling time of the weakly supervised approach was compared with that of the fully supervised approach. Data from a total of 1,027 patients were analyzed. The residual neural network displayed a higher sensitivity than did the visual geometry group network in spatially locating the small stroke and hemorrhagic infarction lesions. The residual neural network had significantly greater patient-level sensitivity than did the human readers (98.4% versus 86.2%, P=0.008) in identifying concurrent hemorrhagic infarction with GRE as the reference standard; however, their specificities were comparable (95.4% versus 96.9%, P>0.99). Weak labeling of lesions required significantly less time than did full labeling of lesions (2.667 versus 10.115 minutes, P<0.001). Weakly supervised learning was able to spatially locate small stroke lesions in different positions and showed more sensitivity than did human reading in identifying concurrent hemorrhagic infarction based on DWI. The proposed approach can reduce the labeling workload.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.