Abstract

A number of proteins are able to enter cells from the extracellular environment, including protein toxins, growth factors, viral proteins, homeoproteins, and others. Many such translocating proteins, or parts of them, appear to be able to carry with them cargo into the cell, and a basic sequence from the HIV-1 Tat protein has been reported to provide intracellular delivery of several fused proteins. For evaluating the efficiency of translocation to the cytosol, this TAT-peptide was fused to the diphtheria toxin A-fragment (dtA), an extremely potent inhibitor of protein synthesis which normally is delivered efficiently to the cytosol by the toxin B-fragment. The fusion of the TAT-peptide to dtA converted the protein to a heparin-binding protein that bound avidly to the cell surface. However, no cytotoxicity of this protein was detected, indicating that the TAT-peptide is unable to efficiently deliver enzymatically active dtA to the cytosol. Interestingly, the fused TAT-peptide potentiated the binding and cytotoxic effect of the corresponding holotoxin. We made a fusion protein between VP22, another membrane-permeant protein, and dtA, and also in this case we detected association with cells in the absence of a cytotoxic effect. The data indicate that transport of dtA into the cell by the TAT-peptide and VP22 is inefficient.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.