Abstract
Climate change and disturbance are altering forests and the rates and locations of tree regeneration. In semi-arid forests of the southwestern USA, limitations imposed by hot and dry conditions are likely to influence seedling survival. We examined how the survival of 1-year seedlings of five southwestern US conifer species whose southwestern distributions range from warmer and drier woodlands and forests (Pinus edulis Engelm., Pinus ponderosa Douglas ex C. Lawson) to cooler and wetter subalpine forests (Pseudotsuga menziesii (Mirb.) Franco, Abies concolor (Gord. & Glend.) Lindl. Ex Hildebr. and Picea engelmannii Parry ex Engelm.) changed in response to low moisture availability, high temperatures and high vapor pressure deficit in incubators. We used a Bayesian framework to construct discrete-time proportional hazard models that explained 55-75% of the species-specific survival variability. We applied these to the recent climate (1980-2019) of the southwestern USA as well as 1980-2099 CMIP5 climate projections with the RCP8.5 emissions pathway. We found that the more mesic species (i.e., P. menziesii, A. concolor and P. engelmannii) were more susceptible to the effects of hot and dry periods. However, their existing ranges are not projected to experience the conditions we tested as early in the 21st century as the more xeric P. edulis and P. ponderosa, leading to lower percentages of their existing ranges predicted to experience seedling-killing conditions. By late-century, extensive areas of each species southwestern range could experience climate conditions that increase the likelihood of seedling mortality. These results demonstrate that empirically derived physiological limitations can be used to inform where species composition or vegetation type change are likely to occur in the southwestern USA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.