Abstract
Along with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), 24 unsubstituted polycyclic aromatic hydrocarbons (PAHs) were evaluated for their ability to induce 7-ethoxyresorufin-o-deethylase (EROD) activity in the rainbow trout liver cell line RTL-W1. When the duration and cell density of exposure were increased, the EC50 for EROD induction was relatively constant for TCDD, but increased for PAHs. Regardless of exposure conditions, EROD activity was not induced by 9 PAHs: naphthalene, phenanthrene, anthracene, pyrene, perylene, acenaphthylene, acenaphthene, fluorene, and fluoranthene. Two PAHs, benzo[g,h,i]perylene and coronene, induced EROD activity inconsistently. The remaining 13 PAHs consistently induced EROD activity. The EC50s for induction exhibited approximately a 110-fold range. The order of potency, from most to least potent, was benzo[k]fluoranthene, dibenzo[a,i]pyrene, dibenzo [a,h]anthracene, benzo[a]pyrene, indeno[1,2,3-cd]pyrene, benzo [b]fluoranthene, pentacene, benzo[b]anthracene, benzo[b] fluorene, chrysene, benzo[a]anthracene, benzo[e]pyrene, and triphenylene. When the induction potency was expressed relative to TCDD, the toxic equivalency factors (TEFs) ranged from 0.001 to 0.000 01. When expressed relative to benzo[a]pyrene, the TEFs ranged from 3.44 to 0.03.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.