Abstract

BackgroundRare coding variants ABI3_rs616338-T and PLCG2_rs72824905-G were identified as risk or protective factors, respectively, for Alzheimer’s disease (AD).MethodsWe tested the association of these variants with five neurodegenerative diseases in Caucasian case-control cohorts: 2742 AD, 231 progressive supranuclear palsy (PSP), 838 Parkinson’s disease (PD), 306 dementia with Lewy bodies (DLB) and 150 multiple system atrophy (MSA) vs. 3351 controls; and in an African-American AD case-control cohort (181 AD, 331 controls). 1479 AD and 1491 controls were non-overlapping with a prior report.ResultsUsing Fisher’s exact test, there was significant association of both ABI3_rs616338-T (OR = 1.41, p = 0.044) and PLCG2_rs72824905-G (OR = 0.56, p = 0.008) with AD. These OR estimates were maintained in the non-overlapping replication AD-control analysis, albeit at reduced significance (ABI3_rs616338-T OR = 1.44, p = 0.12; PLCG2_rs72824905-G OR = 0.66, p = 0.19). None of the other cohorts showed significant associations that were concordant with those for AD, although the DLB cohort had suggestive findings (Fisher’s test: ABI3_rs616338-T OR = 1.79, p = 0.097; PLCG2_rs72824905-G OR = 0.32, p = 0.124). PLCG2_rs72824905-G showed suggestive association with pathologically-confirmed MSA (OR = 2.39, p = 0.050) and PSP (OR = 1.97, p = 0.061), although in the opposite direction of that for AD. We assessed RNA sequencing data from 238 temporal cortex (TCX) and 224 cerebellum (CER) samples from AD, PSP and control patients and identified co-expression networks, enriched in microglial genes and immune response GO terms, and which harbor PLCG2 and/or ABI3. These networks had higher expression in AD, but not in PSP TCX, compared to controls. This expression association did not survive adjustment for brain cell type population changes.ConclusionsWe validated the associations previously reported with ABI3_rs616338-T and PLCG2_rs72824905-G in a Caucasian AD case-control cohort, and observed a similar direction of effect in DLB. Conversely, PLCG2_rs72824905-G showed suggestive associations with PSP and MSA in the opposite direction. We identified microglial gene-enriched co-expression networks with significantly higher levels in AD TCX, but not in PSP, a primary tauopathy. This co-expression network association appears to be driven by microglial cell population changes in a brain region affected by AD pathology. Although these findings require replication in larger cohorts, they suggest distinct effects of the microglial genes, ABI3 and PLCG2 in neurodegenerative diseases that harbor significant vs. low/no amyloid ß pathology.

Highlights

  • Rare coding variants ABI3_rs616338-T and PLCG2_rs72824905-G were identified as risk or protective factors, respectively, for Alzheimer’s disease (AD)

  • The AD risk association observed by Sims et al, with ABI3_rs616338-T was validated in our non-overlapping AD Replication cohort, which demonstrated an increased minor allele frequency (MAF) in the AD cases compared to the controls (MAFAD = 0.016, MAFcontrols = 0.011) despite the P values not reaching significance (Fisher’s odds ratio (OR) = 1.44, p = 0.116; logistic regression (LR) OR = 1.49, p = 0.163)

  • The complete Caucasian AD cohort showed significant association with both ABI3_rs616338T (OR = 1.41, p = 0.044) and PLCG2_rs72824905-G (OR = 0.56, p = 0.008) with Fisher’s exact test. These OR estimates were maintained after multivariable logistic regression analyses, albeit at reduced significance (ABI3_ rs616338-T OR = 1.36, p = 0.141; PLCG2_rs72824905-G OR = 0.58, p = 0.052)

Read more

Summary

Introduction

Rare coding variants ABI3_rs616338-T and PLCG2_rs72824905-G were identified as risk or protective factors, respectively, for Alzheimer’s disease (AD). Rare nonsynonymous variants in ABI3 (p.Ser209Phe; rs616338-T) and PLCG2 (p.Pro522Arg; rs72824905-G) have recently been implicated in conferring risk and protection, respectively, for Alzheimer’s disease (AD) [1]. WRC activates the actin nucleator actin-related protein-2/3 (Arp2/3) to induce actin polymerization, which is necessary for cell motility in many functions including immune responses [3]. These findings and the identification of ABI3 expressing microglia clusters exclusively in AD brains and around amyloid beta (Aβ) plaques [4] may suggest a role for ABI3 in microglia motility

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call