Abstract

Recently, oxidative stress was implicated in the environmental contaminant Di-(2-ethylhexyl) phthalate (DEHP)-induced testicular toxicity, however the mechanism is unclear. We investigated the role of oxidative stress-responsive microRNAs in DEHP-induced aberrations and the protective effect of the citrus flavonoid, hesperidin (HSP). Male Wistar rats were randomly allocated into four groups as vehicle-treated control, DEHP-alone group (500 mg/kg/day) for 30 days, and HSP (25 or 50 mg/kg) for 60 days; testicular damage was triggered by oral administration of DEHP (500 mg/kg/day) after thirty days of oral administration of HSP (25 or 50 mg/kg). DEHP administration reduced testis weight coefficient, serum testosterone, testicular 3β-hydroxysteroid dehydrogenase and antioxidant enzyme activities, and elevated serum fatty acid-binding protein-9, testicular malondialdehyde, and Bax/Bcl2 ratio. Aberrant testicular miR-126-3p and miR-181a expression was observed, along with decreased expression of sirtuin1 (SIRT1) and its targets; nuclear factor-erythroid 2-related factor2, haeme oxygenase-1, and superoxide dismutase2. HSP administration significantly ameliorated these changes and restored testicular function in a dose-dependent manner. We highlight a novel role of oxidative stress-miR-126/miR-181a-SIRT1 network in mediating DEHP-induced changes which were reversed by the antioxidant HSP.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call