Abstract

We use ray-trace equations for uniaxial birefringent materials to derive third-order estimates for aberrations that are produced in imaging through uniaxial plates and horizontal-vertical (HV) depolarizers. An HV depolarizer is a spatial pseudodepolarizer; it converts a uniform input polarization state into a continuum of spatially varying polarization states in an output beam. An HV depolarizer consists of two birefringent wedges whose crystal axes are crossed at 90 degrees . The interface between the wedges is inclined, which leads to a spatially varying retardance that provides the spatial pseudodepolarization. In HV depolarizers, spherical aberration, astigmatism, and image doubling are the principal aberrations for on-axis objects. Only spherical aberration occurs in isotropic plates, while the presence of birefringent wedges introduces astigmatism and image doubling. It is shown that image separation is proportional tothe magnitude of the retardance variation. Image separation is independent of the thickness, wedge angle, and refractive indices that are used to achieve this variation. A computer program is used to perform an exact birefringent ray trace and produces spot diagrams that confirm the aberration estimates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.