Abstract

An exact treatment of beam optics, starting ab initio from the Maxwell's equations is presented. The starting point of this approach is a matrix representation of the Maxwell's equation in a medium with varying permittivity and permeability. Formal expressions are obtained for the paraxial and leading order aberrating Hamiltonians, without making any assumptions on the form of the varying refractive index. We derive the wavelength-dependent contributions at each order, starting with the lowest-order paraxial Hamiltonian. To illustrate the general theory, we consider the computations of the transfer maps for an axially symmetric graded-index medium. For this system, in the traditional approaches, one gets only six aberrations. In our formalism, we get all the nine aberrations permitted by the axial symmetry. The six aberrations coefficients of the traditional approaches get modified by the wavelength-dependent contributions and the remaining three are pure wavelength-dependent. It is very interesting to note that apart from the wavelength-dependent modifications of the aberrations, this approach also gives rise to the image rotation. The present study is the generalization of the traditional and non-traditional prescription of Helmholtz optics. In the low wavelength limit our formalism reproduces the Lie algebraic formalism of optics. The present study further strengthens the close analogies between the various prescriptions of light optics and charged-particle optics. The new formalism presented here, provides a natural framework to study beam-optics and polarization in a unified manner.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call