Abstract

We review some applications of aberration–corrected electron microscopy for the detailed characterization of semiconducting nanostructures using a combination of high-angle annular dark-field scanning transmission electron microscopy and electron energy loss spectroscopy. The study of self-assembled quantum wires shows that it is possible to determine the composition of the nanostructures with better than 1 nm resolution down to the atomic level while the contrast in the high-angle annular dark-field images is used to determine the presence of wetting layers separating quantum wires and the strain field arising from the local compositional changes. The local measurements of energy loss spectra demonstrate the shift of plasmon peaks consistent with the changes in lattice parameters. High-angle annular dark-field images are also used to study the contrast in GaSb thin films deposited and study the presence of anti-phase domain boundaries. These examples show that aberration-corrected microscopy combined with electron energy loss spectroscopy provide not only enhanced resolution but also increased sensitivity to atomic site compositional changes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.