Abstract

Non-graphitizing carbons (NGCs) are an important class of solid carbons which cannot be converted into graphite by high-temperature heat treatment. They include commercially valuable materials such as activated carbon and glassy carbon. These carbons have been intensively studied for decades, but there is still no agreement about their detailed atomic structure, or the reasons for their resistance to graphitization. The first models for graphitizing and NGCs were proposed by Rosalind Franklin in the early 1950s, and while these are broadly correct, they are incomplete. Many alternative models of NGCs have been put forward since Franklin's time, but none has received universal acceptance. Diffraction and spectroscopic techniques can provide important insights into the nature of these carbons, but only direct microscopic imaging can reveal their true atomic structure. Here, we apply aberration-corrected transmission electron microscopy to an activated carbon prepared from waste biomass and present evidence for the presence of pentagonal and heptagonal carbon rings. This provides support for a model of the structure of NGC made up of curved fragments in which non-hexagonal rings are dispersed randomly throughout hexagonal networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.