Abstract

Holographic particle characterization treats holographic microscopy of colloidal particles as an inverse problem whose solution yields the diameter, refractive index and three-dimensional position of each particle in the field of view, all with exquisite precision. This rich source of information on the composition and dynamics of colloidal dispersions has created new opportunities for fundamental research in soft-matter physics, statistical physics and physical chemistry, and has been adopted for product development, quality assurance and process control in industrial applications. Aberrations introduced by real-world imaging conditions, however, can degrade performance by causing systematic and correlated errors in the estimated parameters. We identify a previously overlooked source of spherical aberration as a significant source of these errors. Modeling aberration-induced distortions with an operator-based formalism identifies a spatially varying phase factor that approximately compensates for spherical aberration in recorded holograms. Measurements on model colloidal dispersions demonstrate that phase-only aberration compensation greatly improves the accuracy of holographic particle characterization without significantly affecting measurement speed for high-throughput applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call