Abstract

Background and ObjectivesMyelin oligodendrocyte glycoprotein antibody-associated diseases (MOGAD) is an idiopathic inflammatory demyelinating disorder in children, for which the precise damage patterns of the white matter (WM) fibers remain unclear. Herein, we utilized diffusion tensor imaging (DTI)-based automated fiber quantification (AFQ) to identify patterns of fiber damage and to investigate the clinical significance of MOGAD-affected fiber tracts. MethodsA total of 28 children with MOGAD and 31 healthy controls were included in this study. The AFQ approach was employed to track WM fiber with 100 equidistant nodes defined along each tract for statistical analysis of DTI metrics in both the entire and nodal manner. The feature selection method was used to further screen significantly aberrant DTI metrics of the affected fiber tracts or segments for eight common machine learning (ML) to evaluate their potential in identifying MOGAD. These metrics were then correlated with clinical scales to assess their potential as imaging biomarkers. ResultsIn the entire manner, significantly reduced fractional anisotropy (FA) was shown in the left anterior thalamic radiation, arcuate fasciculus, and the posterior and anterior forceps of corpus callosum in MOGAD (all p < 0.05). In the nodal manner, significant DTI metrics alterations were widely observed across 37 segments in 10 fiber tracts (all p < 0.05), mainly characterized by decreased FA and increased radial diffusivity (RD). Among them, 14 DTI metrics in seven fiber tracts were selected as important features to establish ML models, and satisfactory discrimination of MOGAD was obtained in all models (all AUC > 0.85), with the best performance in the logistic regression model (AUC = 0.952). For those features, the FA of left cingulum cingulate and the RD of right inferior frontal-occipital fasciculus were negatively and positively correlated with the expanded disability status scale (r = -0.54, p = 0.014; r = 0.43, p = 0.03), respectively. ConclusionPediatric MOGAD exhibits extensive WM fiber tract aberration detected by AFQ. Certain fiber tracts exhibit specific patterns of DTI metrics that hold promising potential as biomarkers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call