Abstract

Examination of a large number of retinal pigment epithelia revealed that, in a small proportion, optic axons in chick and quail eyes aberrantly entered the pigment cell layer between embryonic day (E) 7 to E14. The aberrant retinal axons originated from the main stream of retinal fibers in the optic nerve and invaded the pigment layer from various positions of the optic nerve head or fissure by growing along the basal side of the pigment epithelium. The axon bundles grew several millimeters into the epithelial sheet and arborized at the margin of the eye. As shown by electron microscopy the nerve fibers occurred as bundles of three to several hundred axons. They always were located at the basal side of the epithelium, and were enveloped by processes of epithelial cells. Very large bundles of axons, however, displaced the epithelial cells from the basal matrix. These retinal axons contacted the pigment epithelial basal lamina. The basal extracellular matrix from the retinal pigment epithelium was isolated and used as substratum for in vitro cultures of various types of neural explants. The matrix preparations consisted of a sheet of a 50 nm thick basal lamina with a central lamina densa, two laminae rarae, and a 15 micron thick stroma. Axons from avian retina explants, as well as sensory ganglia, grew on the basal lamina side of the pigment cell matrix with the same growth rate and with the same fiber density as on similarly prepared basal laminae from the neural retina. These experiments show that the matrix from the pigment epithelium of the avian eye does not have negative effects on axonal growth and indicate that a basal lamina from a normally non-innervated tissue can provide a favorable matrix for axonal growth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call