Abstract

Organic acidemias such as methylmalonic acidemia (MMA) are a group of inborn errors of metabolism that typically arise from defects in the catabolism of amino and fatty acids. Accretion of acyl-CoA species is postulated to underlie disease pathophysiology, but the mechanism(s) remain unknown. Here, we surveyed hepatic explants from patients with MMA and unaffected donors, in parallel with samples from various mouse models of methylmalonyl-CoA mutase deficiency. We found a widespread posttranslational modification, methylmalonylation, that inhibited enzymes in the urea cycle and glycine cleavage pathway in MMA. Biochemical studies and mouse genetics established that sirtuin 5 (SIRT5) controlled the metabolism of MMA-related posttranslational modifications. SIRT5 was engineered to resist acylation-driven inhibition via lysine to arginine mutagenesis. The modified SIRT5 was used to create an adeno-associated viral 8 (AAV8) vector and systemically delivered to mutant and control mice. Gene therapy ameliorated hyperammonemia and reduced global methylmalonylation in the MMA mice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.